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SPLINE APPROXIMATIONS FOR LINEAR
*
NONAUTONOMOUS DELAY SYSTEMS

%
H. T. Banks i

Legschetz Center for Dynamical Systems
Division of Applied Mathematics, Brown University 2 N
Providence, RI (02917

I. G. Rosen*
Deparntment of Mathematics, Bowdoin College \\

Brunswick, MAINE (04011
ABSTRACT
We develop a semi-discrete approximation framework for linear non-
autonomous nonhomogeneous functional differential equations of retarded type.
The approximation schemes are constructed and convergence results are obtained
through the approximation of an associated abstract evolution operator.
Computer implementation of the schemes is outlined and a spline based
method included in the framework is constructed. Extensions of the semi~-
discrete methods to schemes incorporating full discretization and difference
equation approximation are also discussed. Numerical results for several

examples demonstrating the feasibility of the schemes are presented.
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1. Introduction

Our presentation deals with spline based approximation theory for
linear nonautonomous nonhomogeneous functional differential equations (FDE)
via approximation of the associated evolution operator for the homogeneous
equation. Our theoretical framework and the resulting convergence results
are analogous to the Trotter-Kato type approach for convergence of solution
semigroups for autonomous delay systems as developed in [8]. We restrict
our discussions to piecewise linear spline approximations, but have attempted
to state the theoretical results in a form so that one might, if one so de-
sired, easily extend the ideas in a rather straight forward manner to treat
higher order spline approximation schemes.

One might also view the discussions here as one concrete realization
of the evolution operator theory presented for abstract nonautonomous equa-
tions in [14]. Indeed, as we shall see below our approach is very closely
related to the efforts of Reber in [17, 18] who used the Krein approach to
develop for nonautonomous FDE control problems an approximation theory based
on the so-called "averaging" approximations of [4,5]. However, since the
spline based methods of [8] have been shown to offer considerable improve-
ment over the averaging schemes, and since the needs for schemes to treat
nonautonomous problems are rather obvious in a number of areas of applica-
tions (for one example, see the discussion of the tracking models in [24]),
we feel that our modest contribution below towards the development of spline
schemes 1s warranted. We demonstrate the computational efficacy of our
ideas by presenting a sample of our numerical findings in section 6.

Other authors have consideréd approximation schemes for nonautonomous
delay systems. Both Delfour [11] and Reber {18] consider optimal control

problems for linear nonautonomous retarded FDE and develop "full discretization"




techniques (state and time discretization) that employ the averaging ideas
of [4,5]. Kappel and Schappacher in [13] consider nonlinear nonautonomous
delay systems which they approximate by linear interpolating spline schemes
in the "state" space (. This results in essentially an averaging type
scheme as ovposed to the spline schemes discussed below. In a similar spirit
Kunisch [15] discusses the averaging and essentially equivalent linear inter-
polating spline schemes for optimal control of neutral FDE with nonautonomous
retarded terms.

It is possible to take other approaches to a spline approximation theory
for delay systems. In [2] we combine dissipativeness of nonlinear operators
with Gronwall estimates to develop one approach to approximation of nonliuear
FDE. These ideas are pursued in (7, 10] to yield spline approximation methods
(in the context of parameter estimation schemes) for quite general nonlinear
nonautonomous systems of FDE. In addtition to differing in spirit from the
approach of {7, 10], our results below are applicable to linear systems with
nonsmooth coefficients while the theory of [7, 10] requires some smoothness
on the coefficient matrices if it is applied to linear systems.

For our detailed development below we consider ordinary differential
equation (ODE) or semi-discrete approximations to linear FDE. These ODE
for the "Fourier" coefficients of the approximate solution relative to a
fixed spline basis must then be solved by a high order ODE solver (a fourth
order Runge-Kutta in the case of the examples presented in section 6). An
alternative approach involiing immediate full discretization (in both time
and state) and resulting in a differerce equation approximation of the FDE
could be taken in the spirit of the efforts of Rosen in [19, 20]. We give
a brief indication of some of these ideas in sect.ion 5 but will not pursue

a full detailed development along these lines.




While we shall not discuss such applications directly, the reader should
be aware that the approximation ideas developed here are readily (and profit-
ably) used in optimal control and parameter estimation problems (e.g. see [1],
(31, (51, (61, (9], [12], [16], and [21]).

The presentation below is organized in the following manner. In section
2 we summarize equivalence results between FDE and abstract evolution equationms.
We also establish a dissipative condition for the operators involved that is
crucial in our development. Basic approximation results are given in section
3, first for systems with continuocusly differentiable coefficients and then
for systems with L_ coefficient matrices. This is followed by section 4 in
which we develop a particular piecewise linear spline scheme in detail and
explain how it is to be implemented. A brief discussion of full discretization
ideas is given in section 5. We conclude the paper with some representative
numerical findings in section 6.

Notation throughout is completely standard with respect to symbols for
e

C, Lp, etc. We denote the usual Sobolev spaces of functions £ with

f(k—l) absolutely continuous and f(k) in L2 by Hk. For Lebesgue spaces

of R'-valued functions on (a,b) we adopt the notation L;(a,b) while Lnxn

denotes the space of n square matrices. Finally, we shall sometimes use

D¢ to represent the derivative of a function ¢.

2. The Linear Non-autonomous Functional Differential Equation and its
Equivalent Formulation as an Abstract Evolution Equation

In this section we describe the functional differential equation (FDE)
initial value problem for which we seek approximation schemes and give an
equivalent formulation of it as an abstract evolution equation in an infinite
dimensional Hilbert space. Many of the results and ideas which are outlined

and summarized below are discussed in detail in {18, sections 2 and 3].
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We consider n-vector systems of the form

(2.1) x(t) = L()x, + £(t) t>0,

]
3

(2.2) x(s) x, = ¢,

s

n
where f € Lg’loc(s,+<»), n€ R, ¢€ L‘z‘(-r,O) and x_ denotes the

function 6 > x(t+6), -r < 0 < 0. We assume that for each t > 0, the

linear operator L(t):Lg(-r,O) + R" has the form

v 0
(2.3) L(6)o = X A (0)oC-1;) + f A(t,8)9(8)de,
i=0 -r
with 0 = Ty < Ty STy oot < T, 1 Ai € Lm([s,+®),Lan), i=0,1,2 ¢+ v

and the function t -~ A(t,+*) an element of L _([s,+), LZ([-r,O],L )). The

nxn
point evaluations of ¢ €.L;(-r,0) required in the evaluation of L(t)¢

pose no essential conceptual difficulties since, roughly speaking, we shall
interpret solutions of (2.1) as functions satisfying that equation in inte-~
grated form (i.e. the differentiated form in the almost everywhere sense) and

' can be considered

thus any occurance of L(t)¢ for ¢ only an L, "function’
as appearing under an integral with the L(t)¢ then denoting an equivalence
class of functions. For a further discussion of this point, we refer the
reader to [8].

A solution to (2.1), (2.2) is a function x:[s-r,T] * Rn, T > 0, such that
x € Hl(s,T), x satisfies equation (2.1) almost everywhere in [s,T], x(s) = n
and X, = ¢. Standard arguments [17] can be used to show that the FDE initial
value problem (2.1), (2.2) has a unique solution which depends continuously
upon the initial conditions and the nonhomogeneous term f. We shall on
occasion employ the notation =x(tin,¢,f) (and Xt(ﬁr®sf)) in order to denote

this unique solution (and its past history on [t-r,t]) to (2.1), (2.2) corre-

sponding to a particular choice of n,¢, and f£.




We next define the Hilbert space Z by
z:z R%x L;(-r,O),

with inner product

and reformulate the FDE initial value problem (2.1), (2.2) as an abstract
evolution equation in Z. Corresponding to f = 0, it is possible to define

a solution operator for (2.1), (2.2) on Z by
u(t,s) (n,¢) = (x(t3n,9,0),%,(n,$,0)).

It is easily verified that for T > s the operators {U(t,s):t € [s,T]}

are continuous in t and uniformly bounded. In addition U(t,s) is an evolution
operator on Z in that the uniqueness of solutions to (2.1), (2.2) guarenteecs
that it satisfies U(s,s) = I and the transition property U(t,s) = U(t,T)U(T,s)
for all s <1 <t <T.

Returning to the nonhomogeneous problem, we define for arbitrary

t

(2.4) 2(t,850,0,f) = U(t,8)(n,9) + [ U(t,s)(£(s),0)ds.
]

n

For each (n,¢) € Z, f € L2,loc

(s,#®) and t > s the expression given in

(2.4) exists and is continuous in t. Furthermore, it can be shown that
(2.5) z(t,S;n’q),f) = (X(t;n,¢,f),xt(ﬂ,¢,f))-

Equation (2.5) states that (2.4) and (2.1), (2.2) are equivalent, and in

fact, forms the basis for the approximation schemes developed in the next




section. Indeed, we construct convergent approximations to the solu-~
tion of (2.1), (2.2) via the construction of convergent approximations
to z of (2.4).

If one is willing to impose additional restrictions on (2.1), (2.2) a
stronger result can be established. Consider the initial value problem
(2.1}, (2.2) with the aiditional assumption that the coefficient matrices,
the kernel in the distributed term and the nonhomogeneous term be continuously
differentiable in t and that (n,0) € W= {(n,¢) €2:6 € HL(-r,0),n=06(0)}.
It then can be shown that 2z given in (2.4) is the unique solution to the

abstract evolution equation in Z given by

(2.6) z(t) = A(t)z(t) + (£(t),0),

(2.7) z(s) = (n,¢),
where for each t > s the operators A(t):W €Z+Z are defined by
(2.8) ACE) (6€0),4) = (L(t)$,4).
In addition it can be verified that
w(t) = (x(t3n,9,£), x.(n,9,£)),

is also a solution to (2.6), (2.7) and hence must coincide with z. Thus
under these stronger hypotheses (2.1) -(2.2), (2.4), and (2.6) - (2.7) are all
equivalent.

The existence of an inner product on Z, equivalent to the standard
inner product on Z defined above, and an «w for which the operator
A(t) - w1 1is dissipative plays an essential role in many of the arguments

which follow. Toward this end, we define the same inner product on Z as




that one employed in {8] and [10] for similar purposes. Let p be the

step function on [-r,0) defined by

O(e) = j —T\)-j‘f'l _<. 6 < _T\)"j’ J = 1’2"" Vs

and Zq the space Z with inner product <~,->p are given by
2

0
e+ [ u®0@0 a0 .

-r

<(€,w),(n,¢)>p

It is easily verified that the <°,->p inner product is equivalent to
the standard inner product on Z and moreover, the following lemma can be

established.
LEMMA 2.1. For each t > s, A(t) - wl 1is dissipative in ZD. That is
<A(t).z,z>o < w<z,z>p,

for each 2z € W with

and
v
my = Z|Aiw+ {a] .

It is in fact the case that A(t) - wI 1is maximal dissipative. That is to

say, A(t) - wI 4is onto. The verification of this latter claim can be found
in [18, section 3]. The reader should note that while the hypothesis of T
Lemma 3.3 in [18] include the assumption of smooth coefficients on the right

hand side of the FDE, it is easily seen that this assumption does not play a

role in the arguments used to show that A(t) - I is onto.

Remank 7.1. By the Lumer-Phillips theorem (cf. [25, section IX.8])

the fact that for t € (s,+°) fixed, A(t) - wl 1is a maximal dissipative
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operator on the Hilbert space Z 1is sufficient to conclude that A(t) is
the infinitesimal generator of a Co semigroup of bounded linear operators

on Z.

3. Approximation Results

Following the ideas discussed in {8] we base our approximation schemes
on the following construction. For each N = 1,2,"',{ZN,PN,AN(t)} will be
called an approximation scheme for the initial value problem (2.1), (2.2) if
{ZN} is a sequence of finite dimensional subspaces of Zp, {PN} is a sequence

of operators, where for each N, PN:Zp -> ZN is the orthogonal projection from

Zp onto ZN and {AN(t)} is a sequence of t-dependent operators on Z

N

THEOREM 3.1. Consider the FDE initial value problem (2.1), (2.2) under
the additional assumption that Ai €.C1([s,+®),Lan), t > A(t,*) E;Cl([s,+w),
Lz((—r,O),Lan)) and suppose that {ZN,PN,AN(t)} is an approximation scheme

for (2.1), (2.2) satisfying the following conditions

(1) ZN CW=dom(A(t)) N = 1,2,-+-.

(2) For each t > s, AN(t):ZN - Z is defined by AN(t) = PNA(t),N = 1,20°>,

N

(3a) lim PNz =2 in Z for all z € Z.
N-—)(x:

(3b) For ) € W with PN@ = P (W(0),¥) = (Y (0),hy) we have

lim L(t)y, = L(t)y in R" for each t € [s,T] and

Noroo N

lim DY, = DY in L;(—I,O) with [D(wN- Wl < K[DZWi. K indepen-

N>

dent of N and Yy for all ¢ €W with U € H*(-r,0).
Then 1if UN(t,s) denotes the evolution operator (fundamental matrix solution)
corresponding to the finite dimensional ordinary differential equation in ZN

given by




zy () = Ag(t)z (1),
we have that
1i P U(t, ~-U _(t,s)P =0,
Lin | [PU(t,8) - Uy (t,8)P ]z0]

for each 25 € Z, uniformly in t for t € [s,T].

Proof. An application of Lemma 2.1 and the fact that the PN are

orthogonal projections yields the following: For Zy € ZN

<4N(t)zN,zN>p = <PNA(t)zN,zN>o = <A(t)zN,PNzN>O

< > < 5y < 2207 s
A(t)zN,zN o < y <zy ?Np

where « 1is defined in the statement of Lemma 2.1, and is independent of N.
The calculation above, and the fact that AN(t) is a bounded linear operator
defined on the finite dimensional space ZN are sufficient to guarantee that

AN(t) - wl, N=1,2,**+, are maximal dissipative, and moreover
o(Ay(t)) {A €¢:Re) < w}, N=1,2,", t > s.

Thus for all X € ¢ with Re)X > w the resolvent operators R(A,AN(t)) exist

and by standard arguments (c.f. [14, p. 85]) we have

1

im N=1,2,*+, t € [s,+0).

(.1 [ROLAD ] = [ o) -7

Inequality (3.1) and the same arguments used to establish the validity of

Theorem 3.5 in [18] allows us to conclude

lug(e,) 1, < e (Es)

where M 1s a constant independent of N and L(+), the homogeneous part of
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the right hand side of the FDE (2.1). The reader is instructed to note
that while the constant M derived in the proof of Theorem 3.5 in [18]
does depend on L(*), our M does not. This is a consequence of the

fact that the weighting function p 1in the inner product <°,'>D is in-
dependent of the Ai’ whereas that in the inner product <.">A chosen by
Reber is not. The significance of our choice for the inner product will
be apparent in the discussions below pertaining to extensions of our con-
vergence results to equations with the Ai’ A only in L.

Let D be the subset of Z defined by
D= {(n,0) €2:¢ €C2(~r,0),n=0(0),L(s)d = ¢(0)}.

Using the fact that A(s) is the infinitesimal generator of a CO seti~
group of operators on Z (cf. Remark 2.1) arguments similar to those
used to verify Lemma 2.2 of [8] can be used to establish the fact that D

is dense in Z. Consider next the initial value problem in Z given by

(3.2) 2(t) = A(t)z(t),

]
N

(3.3) z(s) . z, €D,

and the following identity derived from it:

pNz'(t) = AL(e)Pz(e) + [BA(E)z(t) - Ag(E)Pz(e) ].

Recalling that the PN are orthogonal projections, and therefore uniformly

bounded, we have
£ PE(D] = AU [Pz(®)] + [RAM®2(E) - AP z(B)],

and thus, by the variation of constants formula
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t
(3.4)  Pyz(t) = Uy(t,s)Pyz(s) +js‘uN(t,r)[p¢(r)-AN(T)PN]z(r)dT.

Since

zq € DCW, the unique solution =z to (3.2), (3.3) is given by

z(t) = U(t,s)zo,

and hence (3.4) can be rewritten as

There

(3.5) IPNU(t,s)zo-UN(t,s)PNzOI

Let

Then

t
PU(E,s)zg = Uy(ts)Pyzg = fUN(t,T)[PNA(T) - A (DR Jz(T)dT.
S

fore

z = (6(0),¢) € Z be such

| [P ACE) —AN(t)PN]zlz

A

[}

t
| oD RA® - Ar @t

t
f lug (e, 0 | [[RyA(T) - A (1) P12 (T) |dt

s

IA

| A

w(T—S) T
Me _[ | [P A(D) - Ay(D)Pylz(D) | dT.
s

that ¢ € Hz(-r,O) .

[}

[P AC) - BADIPL1(6(0),) |

[TACE) - AP 1(6(0),0) |2

2
| (L(£)9,D8) - (L(£)oyDo) |

2 2
l<L<c>¢—L<c)¢N)!Rn + |D¢>-D¢NIL2 >0,
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as N> » for each t € [s,T] by condition (3b). Thus PNA(t)z-AN(t)PNz + 0
for each t € [s,T], and each z = (¢$(0),¢) € Z with ¢ € HZ(—r,O).

Now under the smoothness assumption on L(*) for zg = ¢0,p) €D
we have that x(+;9(0),9,0) eHz(s,+°°). Consequently xt((b(O),d),O) '3 Hz(—r,O)
for t > s. Therefore in the light of the equivalence established in section

2, and the arguments above, we have

(3.6) |[pNA(t)-AN(t)PN]z(t){

| [PyACE) = A (E)P TUCE, )z |

[[RyACE) - AL (E)P 1 (x(£56(0),6,0) 5% ($(0),4,0)) |
+~ 0 for each t&([s,T] with the convergence

being dominated. 1Indeed, x € Hz(s,+‘n) and an application of condition (3b) yielda

A

[[PGACE) = A (R T2(0) |7 < [TACE) ~ ACEYPL] (x(E56(0),6,0) ,x, (8(0),6,0))1

[ (L(t)x (6(0),6,0),Dx, (6(0),6,0))

= (L)X 0(0) 16,00 ,Dx} (6€0),6,00) |

| 169 (1 (000,000 = £ 6 000,00 |2

+ D (x, (9(0),6,0) - X} (6(0),4,0)) |2

; 2 2
162 0, (000,0,0) - {(0(0),0,0)) 2 + K107 0(0).0]

i

|A

]
2 !
| i

L;(S_r.

IA

|L06) (x, (6€0),6,0) - x(6(0),6,0) |2 + k¥ |pPx
R

where the bound on the second term in the above estimates is a consequence of

condition (3b) and (xN(t),xt:) z PN(x(t),xt). We note that it is not true in
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general that xg = (xN)t. To see that the convergence in the first term is
dominated as well, we first observe that xN(t) + x(t) wuniformly in t for
t € [s-r,T]. This follows from condition (3a) and the fact that the subset
of Z given by {z(t):t € [s,T]} 1is compact (being the continuous image of

a compact set in R). Then, since for =-r < 6 <0

0
X (8) = % (0 + [ @x) (0)do,
0
we have
N N 0 N
|%c(8) - %, (8) ]| < [x.(0) =%, (O] + feln(xt—xt>co>|do
i
f_lxz(o)-xt(0)| + r2|D(x§--xt)|2
< 1w - x| + o’ |,
< M© - x| + x|
Lz(s—r,T)
< |- x|, + ofk (o’ .
Lz(s—r,T)
Therefore

L) (x, (6(0),6,0) - X (6(0),6,0)) | o

< (lx“(-:¢(0),¢,o> - x(+36(0),0,0) |_+ r¥k|p%x] . )
Lz(s-r,T)

Y 0
- (Z:,)IAjon vt f |A<-,e>|2de>’1’|m).
-r

Returning to (3.5), the convergence stated in (3.6) together with the dominated
convergence theorem allow us to conclude that for each z, €D
|PNU(t,s)zO-UN(t,s)PNzo| + 0 as N -+ o, uniformly in t for t & [s,T]. But

D 1is a dense subset of Z and the operators
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[PU(t,8) - U (t,8)P ] ,
are uniformly bounded in N. Therefore
[PNU(t,s)z-UN(t,s)PNzI -+ 0, N » @,
uniformly in t for t € [s,T] for each z € Z.

Reman&, It is possible to obtain estimates for the rate of convergence
of the evolution operators on restricted classes of initial data. The rele-
vant arguments are in the same vein as those used to derive the estimates
for the rate of convergence in the autonomous case. The details of these
arguments can be found in [8].

Turning our attention to the nonhomogeneous problem, for (n,¢) &€ Z
and fe LD (s,+°) we consider the approximating finite dimensional non-

2,1oc

homogeneous ordinary differential equation in ZN given by

2g(t) = A (E)zy (£) + Py(£(t),0),

#

zN(S) PN(n,¢)-

Using the variation of constants formula, we can write down the solution

to this initial value protlem. It is given by zN(t,s;n,¢,f) = UN(t,s)PN(n,¢)
+ JsUN(t,O)PN(f(o),O)dO for t > s. An application of arguments analogous to
th;;e used to verify Theorem 3.2 of [8) will establish the validity of the

following theorem.
THEOREM 3.2. Under the hypotheses and conditions of Theorem 3.1 we have
(a) For (n,¢)€ z and f€ Ly(s,T)

lim ZN(t,S;n’d)’f) = z(t,s;n,¢,f),

N->oo
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uniformly in t for t € [s,T] and uniformly in f
for f 1in bounded subsets of Lg(s,T).
(b) TFor (xN(t),yN(t)) € Z, defined by (xN(t),yN(t)) = zN(t,s;ﬂ,®,f),

we have

lim xN(t) = x(t;n,9,£),
N

uniformly in t for t €[s,T].
(¢) 1If {fk} is a sequence in Lg(s,T) converging weakly to f then
lim ZN(t,S;n,¢,fk) = z(t,s;n,0,f),
N, k-

uniformly in t for t €][s,T].

Remark. Although it will not be discussed in this paper, part (c) of
Theorem 3.2 above plays an essential role in the application of our approxi-
mation results to the solution of optimal control problems governed by FDE
of the form (2.1). These ideas are discussed in detail for the case of an

autonomous equation in [5].

We conclude this section with a discussion of the details involved in
extending the approximation results above to FDE initial value problems of

the form (2.1), (2.2) with non-smooth right hand sides. Define

=
it

Lm((s,+w),( g Lnxn)X LZ«_r’O)’Lan))’

=
]

. Cl((s,+°°),< );Z an) x Lz((—r,O),Lnxn)) :

Then Ac c A and for X = (AO,A °°',Av,A) = (AO(-,A),AI(-,A)’...’

l!
Av(°,A),A(-,-,X)), an element of A or Ac define
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v o 0 2. %
Mo = B Ial.+ 1S 1ac.0 %0k, .

j=0 “r
Let L(t;A) be the operator defined in (2.3) where the coefficient matrices
are the components of A. Let Ux(t,s) denote the solution operator and
x(*,n,¢,0,A) the solution of the FDE initial value problem (2.1), (2.2) with
f 0 and L(t) = L(t;A). Let A(t;A):W € Z +~ Z denote the operator de-
fined in (2.8) with L(t) = L(t;A) and UA,N(t’S) denote the solution

operator for the approximating initial value problem in ZN:

éN(c) = At Nz (1),

zN(s) = zg
with
Ay(E52) = PA(E;A).

LEMMA 3.1. Let X € A be fixed. Then there exists a sequence
{2} €A, such that Mk— M, > 0, k > . Moteover, for 1z, = (¢(0),4) €W

we have

2
|ka(tys)zo"uk(tss)zolz S.Klkk_ A[m |Zol
where K = K()\) 1is a constant independent of k and 24

Proo§. The existence of the sequence (Ak} CA, with A > isa

consequence of the fact that Ac is a dense subset of A. Next, we let

3.7 z(t) = U, (t,8)z, = (x(£30(0),,0,1),x,(4(0),¢,0,})),

(3-8) Zk(t) = ka(t,s)zo = (x(t;¢(0),@,Oﬂk)‘xt(¢(0),¢>,0,)\k)),

where the extreme right hand equalities in (3.7) and (3.8) follow from the

equivalence established in section 2. We note that for each t > s, z(t),z, (t) € W.

—— A
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By [18, Theorem 3.15], for )‘k € Ac and zp € W we can write

t
2, (6) = 2, +_£ A(g3 X )z, (0)do

and by [10, p. 23] for A € A and zoew

t
z(t) = z +J; A(osA)z(o)do.
Let A(t) = z(t) - zk(t). Then A(t) @« W and

t
(3.9 A®) = [[AC030)2(0) ~ Alos N ) 2, (0) 1do

t
= J;:A(o;)\)[z(o)— 2, (0)]+ [A(o;x)-A(o;)\k)]zk(o):do

t

= {[A(o;)\)[\(o)+6Ak(0)zk(c)]dc,

where

A, (0) = A(o;0) - AlosA) -
If we then apply [2, Lemma 2.1] (3.9) implies
1ae)|% = [86s) |2 + 2 t‘<A(o-x)A<c) A(0)>
P 0 {l ’ ’ P
+ <6Ak(c)zk(o),A(o)>p{do.
But A(s) =0 and (c.f. Lemma 2.1)

<A@ )B(0),A(0)> < wmlA(o)lf,.

Therefore, an application of the Gronwall inequality yields

|a(e) |2

IA

2 Flu0)]a60))? + 3|64 12+3]a(0)|2la
flsm]ee L ()2, (©) 0)|*|do
t

t
J @00+ DA %0 + [ |64, ()2, ()] %40,
8 s
t

5fsléAk(o)zk(o)|2dc L0 + 1) (t-s)
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Consider the integrand in the last expression above:

(64, ()2, @) |

(Leo10) = LLa3A 15, (00D 020520 0) |2

V

(AN = AR T (x(O58(0) 020,005 (0(02,6:0:) )\2

0
+ [r[A(c,em—A(a.o;aknx<o+e;¢<o>,¢>,o,xk>dexz.

Recalling that for )‘k € I\c and 2z, €ewv

w()k)(t—s)
1U>\1£t,s)zol < Mlzo\e .

by (3.8) we have
w(hk)r
)X(T;¢(0),¢,0,>\k)! < M\Zole , s-r <1 =T,

and hence

Ix(+:6(0),0,0) | < Mizgle <Kzl

where K 1is independent of k for all k sufficiently large.

for J € [s,Tl

iéAk(O)zk(O) ‘2

In

(ﬁlzolﬁg‘;{)\%(' SV EFN IR

0 2
+ | f(A(ne;A)-A(-,e;kknde\wn
-r

IA

. v
(Klzol LZ:OIAi(v;A) - A, G g

0 2
vt f 5A(-,9;x)-A(-,e;xk)lzde)ﬂwl)
-T

Therefore
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A

~2 2 V
K lzol (igomi(-;)\)— Ai(°;)‘k) ‘m

9 po\2
1 {f1ac0m -A(-,e;xknzde)‘Jm)

>2 2 2
= K |zo| l)\-)\k|00 .

Thus, we have

|Ux(t,s)z0-UAk(t,s)zO|2 = Jz2(t) - zk(t)lz - lA(t)IZ

{A
(md

‘ I |64, (0) 2, (0) |2do£ e (20) +1) (t-s)

s

{A
[ad

~2 2 2 )

2 2@ +1(T-s)

k'

A
—~
=]
|
3]
~
=~

which implies

|U)\(t)s)zo‘u)\k(t,5)zol i Klzol l)‘—)\kloo ’

where

K = R(T—s)ée(wo‘) + 1) (T-s) )

Let X = (AO,Al,---,Av,A) € A be given and consider the FDE initial value
problem
x(t) = L(t3M)x,,
(x(s),x) = 25 = (n,9).
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Using the fact that W 1is dense in Z and Ac is dense in A, for

€ > 0 given, we can choose EO € W such that

l2g- 2, < % W (T-5)

~

and A € Ac such that

A-X] < 2 .
€ _~w(h) (T-s)
KO G e + lzgD
Since
e -w(A)(T-
3] < 13- 2] + l2] < £ NS 4y ),
we have
‘ ')\—A!m < £ =
K(A)|zol
Now,

(3.10) I[PNU)\(t,s)—UX,N(t,s)PN]zo|i [Py, (t,8) [z~ 2]

+ [pU, (e58) - PUG(e,8) 135 | + | [RU5(£,8) = U (t,8)Py 15|

+ ]UX,N(t,s)PN[Eo- 2ol < Mew(k)(T-S)lz- z5| + K[z A=A

ol

0

+ |[PNUx(t,s)-UX,N(t,s)PN]EOI+ M ,z_zolew(x)(ps)

0

wQ) (T-s) -w()) (T-8)

- - 3 £
+ I[PNU)‘(t,s) UA’N(t,s)PN]zO] + Me N e

= 2 + | [R5 (£,8) = Uy o (£,9)Py130| + €OV 70N (T=)

+0 as € » 0,
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where the second term in the final expression above tends toward zero
uniformly in t for t & [s,T] by Theorem 3.1 and the coefficient of the
third term tends toward 1 as € > 0 as a consequence of the continuity of
w with respect to A.

To summarize, (3.10) above reveals that in order to obtain an approxi-~
mate solution to (2.1), (2.2) corresponding to X € A it suffices to apply
our approximation schemes to an approximating FDE initial value problem.

That is, apply them to (2.1), (2.2) corresponding to x E:Ac a smooth

approximation to A. However, when actually implemented in practice, the
approximation schemes which we have developed rely upon the application of
standard discrete numerical methods for ordinary differential equations to

the initial value problem

(3.11) 'zN(c) = Ag(ts M)z (0)

(3.12) zN(s) = PNz0 .

If we replace AN(t;A) with AN(t;X) and if the time step in the ordinary
differential equation integration is chosen sufficiently small, the resulting
numerical solution would be indistinguishable from the one obtained by simply
integrating (3.11), (3.12) as it stands. Thus, although the convergence
result stated in Theorem 3.1 applies only to FDE initial value problems with
smooth coefficients, in practice our approximation schemes are applicable to

FDE with right hand sides in L as well.




Spline Approximations and Their Implementation

In this section we outline the ideas involved in realizing the approxi- i
mation schemes discussed in section 3 in a manner appropriate for computer
implementation. The formulation employed in [8] for schemes developed for :
autonomous equations can be modified so as to be applicable to schemes for
nonautonomous equations as well. Therefore, with the exception of the modi-
fications required by the time dependence of the operator A(t), the results
below are a summary of results found in [8]. We conclude the section with
the construction of a particular realization using spline functions which

satisfy the hypotheses and conditions of Theorem 3.1.

Let {ZN,PN,AN(t)} be an approximation scheme for the FDE initial value
problem (2.1), (2.2) which satisfies the hypotheses and conditions of Theorem
3.1. Assume dim ZN = kN < ® N=1,2,**+ . We recall condition (1) of Theorem

~ N N
3.1, which states that ZN C W, and fix a basis for ZN’ B? = (Bj(O),Bj)

j o= 1,2,°++, k, with S? E.Hl(-r,O). Let BN denote the n»‘kN matrix

N’

function defined on (-r,0) by

N _ N N ., N
B = (81182’ sBkN)’

and let

AN = @, eY.

For any zy € ZN’ we can write

2y = My = @Oy, 8%,
kN
where aN € R is the coordinate vector representation of ZN with respect 1
N kN
to the basis {B3.},_,-
i i=1
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Central to our approximation schemes is the finite dimensional appror:i-

mating ordinary differential equation initial value problem in ZN given by

(4.1) 2y (8) = A(E)zy(t) + P (£(£),0),

[}

(4.2) 2(8) = Py(n,0).

s . .
If we let WN(t)’ FN(t), and w,, denote coordinate vector representation of

N
zN(t), PN(f(t),O), and PN(n,¢) respectively, and if we let AN(t) denote
the matrix representation for the operator AN(t), all with respect to the

basis {EN} the initial value problem (4.1), (4.2) reduces to

3731’
&N(t) = Ay(B)wy(t) + Fy(t)
g (8) = vy,

which can then be solved via standard numerical methods for the integration
of ordinary differential equations. However, in order to do this, we must

first compute

(1) Py(n,¢) €2y for (n,¢) €& 2

(2) AN(t)’ t > s,

wlth respect to the basis

{é’.q}lgzl. We begin with (1).

Since PN is the orthogonal projection Zp > ZN’ the orthogonality

relationship in ZD
(4.3) {Py(n,0) - (0} | 2

uniquely determines PN(n,¢), and therefore w as well. Expression (4.3)

A

is equivalent to

<BN’§NWZ = (n)¢)>p = 0’
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which implies

<BN’ENWZ>{J = </é’N»(ﬂ,¢>)>o *

or
(4. 4) Quey = By(®)

where

AN aN N, \\ToN § N, T,N
g = <BLEG = B @ E© ¥ f i@ 8 @00,
-r
and
AN N, 0T O N, T
hy(n,) = <B,(m,0)>, = 8O * § 810 6(0)0(®)do.
~T
Therefore,

W= gy hy(nse) -

The calculations above provide a means by which FN(t) can be computed as

well. Indeed, (4.4) implies

QF () = hy(£(8),0);

but

hg(£(£),0) = AR ION

and hence,

LN T
FN(t) Qy g (0) f(t).

N

We next address (2). let & = (¢,,(0),%,) €2 and suppose &R
N N N N N

that

is such
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~ _ AN
by = B -
Furthermore, for each t > s, let YN(t) be such that
~ /\N
Af(B)dy = B YN(t)-
It, of course, then follows that
(4.5) YR8 = Ag(e)oy.

Since AN(t)CBN = PNA(t)$N = PN(L(t)¢N,D¢N), YN(t) is the coordinate vector

representation for (L(t)¢N,D¢N). Therefore, by (4.4)

Oy () = By (L(D)§DEY = hy(L(r)Bloy, (DB = Hy(B)ay,

where
H(6) = hy(L(e)E", (08")
N T N 0 N T N
= Mo Twws) + [ 8 (8) (DB (8)p(8)0 .
r
Thus,
QuYy(t) = Hy(t)oy,
or
() = Q. (6)
N n Hnit)oy
which by (4.5) implies
-1
A (t) = Qy H(t).
Since we have assumed that {ZN,PN,AN(t)} satisfies the hypotheses and

conditions of Theorem 3.1, it follows that
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i BNWN(E) = (x(E3n,0,),x, (,6,6)),

N>

and

1im 8V (t) = x{t;n,6,f) ,

N+
uniformly in t for t & [s,T] and uniformly in f for f in bounded
subsets of Lg(s,T).

We conclude this section with the description of a particular approxi-
mation scheme which is included in the framework constructed in section 3.
While the scheme we develop is closely related to the spline based schemes
discussed in [6] and [8], slight differences in formulation necessitate the

presentation of the scheme's development in detail.

Consider the partition of ([-r,0] given by {t?}?zo with t? = -3

j=20,1,2,-++,N, and define

Z; = {(n,¢) €2:n = ¢(0), ¢ a first order spline function with

knots at t?, j = 091;2’...’N}'

1
The set Z; is a finite dimensional subspace of Z with dim ZN = n(N+1).

A basis for Z; may be constructed as follows:

For {t?}?=0 as above, and each j = 0,1,2,¢°,N, let e?(*):[—r,o] + R
denote the "hat" functions defined by

N N N
. L (8-t t; <620
90(6) = ’
0 otherwise
N, N N N
: (6 tj_l) tj_<_e_<_tj_1
N N N N - e
= ;(e-:jﬂ) t:j+l_<_e§tj » 3 =1,2, oN-1 ,

0 otherwise
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N N N
“r Oy r <8<t
N
ey(®) ’
0 otherwise
and let

~ N N
Btzj‘}-l)k = (ej<0)vk’ejvk) j = 0,1’2,00.’N s k = 1’2,-.-,11 .

with vy = (0,---,0,1,0,-“,0)T € R" where the 1 appears in the kth position

2 1
It can easily be verfied that {Sg}zgﬁfl) is a basis for Z&. Let P be
1
the orthogonal projection Zp > Z; and define AN(t) = PéA(t).
1.1 ,1
THEOREM 4.1. The approximation scheme {ZN,PN,AN(t)} satisfies all

of the conditions in the statment of Theorem 3.1.

P&ooﬂ. Since conditions (1) and (2) of Theorem 3.1 are trivially

1 .1
satisfied by {ZN,PN

,A;(t)}, we need only to argue that it satisfies condi-
tion (3) as well. That {Z;,Pi,A;(t)} satisfies condition (3a) is established
in the proof of Theorem 4.1 in [8]. Therefore we only discuss condition
(3b) here.

Let = ($(0),¢) & W with ¢ €H (-r,0) and let & = P:ﬁ = (6 (0), ) -

Theorem 2.5 of [22] (see also Theorem 21 of [23]) implies

N N
Fr-1 “k-1
1,2 1 ,r.2 2,2
(4.6) f lD(¢>—¢>N)l < 3 (ﬁ) f D%
N " tN
k k
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and
N N
-1 ) fx-1
I 1l ré4 2,12
4.7) f lo-ogl < 7 W f In%}®
N N
x x

where ¢§ denotes the interpolatory spline for ¢ e_Hz(—r,O) with knots

at {tN}g_ . From (4.6) and (4.7) we find

1'i=0
(4.8) Ip-opl, < £ %], ,
4.9) lo-oxl, < & &, .

™

Making use of the norm equivalence relation

together with the minimality properties of the orthogonal projection
1 1 .
PN.Zp > ZN we find
(4.10) log-ol, < IPgo=8l, = [34- 0l
: N 2 - N z N Z
~ -~ AT A - I—
< loy=0l, 2 leg-ol, = log-ol, o
— 1 YV 1.2 (.2
< Vv eyl < W In%],
vhere
S SN ¢ I, _ I 1
by = (0,00 = (0(0),0y) €7y .

We next use the Schmidt inequality [22] to estimate ]D(¢N— ¢§)|2. Since

¢N, ¢§ are linear on each sub-intervail {c?,tg_l} we have
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N
1

t
0 h
N
w1 peg-epls = fIoeg-opl?= X [ Ibey-epl?
“r 3= N
3

fA

N
N fin1
X d? [ jog-okl?
- Y N N
j=1 t?

A
M=
A
~~
" |z
N’
N
PR,
.\H
(SS9

A
A
”~~
= |2
N’
N
1
"~ \
o
b=a
2
]
-
(%)
+
=l
N
”~
Z(n
S’
N
™
o
N
©
[ )

< B2oy-0l3 + 5 BHvel;
m

N2 v x4 22 k ,r2.2.,2
< 77 G Ively v TInel;

I A

K (2 142,12
(v+1) 7 @ D%l »

where we have used (4.7) and (4.10) in making the estimates above.

by (4.9) and (4.11) we find

A

DGy - 00 |, + [DGsg- 01,

14 SV 2

+1)xk (ry1n2 1 rii.2
2 G 78], + 3 G 10l

(4.12) 1D(¢N- $) |2

(A

R0 0%] 5,

A

Therefore,
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where
RO = 0.
N
Noting that ﬁ(N) < K, K independent of N and ¢ € HZ(-r,O), we have

and

IDtoyg- 91, < K[D%s],,

which establishes the second part of condition (3b). To see that for each
L(t)q)N - L(t)¢, it can be argued (cf. [8], Theorem 4.1) that (4.12) im-

plies

1
6y (®) = 6(®] < oG,

as N » » uniformly in 8 for 6 &€[-r,0]. Therefore, for each t > s,

t,

|L(t)¢N - L(t)e| < O(%) as N + o and condition (3b) has been established.

For {é }n(N+l) the Z1 basis defined earlier, the matrices QN and

27 9=1 ? N

HN(t) take on a particularly simple form. Indeed, for the case v = 1

(and therefore p(8) = 1) we have




N
r
1 r
v ° N
and
where
11 -
Hy (t) =

-31-

1 1
1 2 1
6 3 6
0
0

HL(6) = BET(E) + Hy

B N
Ao(t),+ Do(t)

D) (t)

- N1

12

(VS]] %)

=

N-1

(t)

o

W=

N
Al(c) +DN(t)
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with
N 9 N !
D.(t) = f A(t,0)e. (9)dO ,
i J 3
b
; and
[
- _
i 1 1
; 2 -3 0 0
| 1 1
2 0 2
0
3 ®
Hy = L
0
1 1
2 0 -3
1 1
i 4] 0 2 -5_J

for N = 2,3,**+ where (:) denotes the Kronecker product and I is the
{ nxn identity matrix.
As in the case of the approximation schemes developed for autonomous

equations in [8],modifications of the results presented above can be used

to verify that approximation schemes employing higher order spline functions

and satisfying the conditions in the statement of Theorem 3.1 can be construc-

ted.
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5. Approximation Schemes Incorporating Time Discretization

In this section we briefly outline and discuss two alternative approxi-
mation scheme formulations based upon the approximation framework and state
discretization techniques developed in section 3. However, the two schemes
which we are going to introduce differ from the strictly semi-discrete schemes
discussed previously in that these schemes incorporate various degrees of
time discretization together with the state discretization. In particular,
the first alternative allows for the discretization of the time dependence
of the operator L(t). This capability is extremely desirable when the time
dependent matrix coefficients on the right hand side of the FDE are computa-
tionally expensive to evaluate. On the other hand, the second scheme allows
for the complete discretization of all time dependence appearing in the equa-
tion. These schemes result in difference equation approximations and are in
the same spirit as the approximation techniques discussed in [18] and [20].
We discuss each alternative separately and in turn.

Let {ZN,PN,AN(t)} be an approximation scheme for the initial value
problem (2.1), (2.2) and for each t > s define the operators KN(C):ZN - ZN

by

(5.1) Agte) = Agely, (k-1) gy <t <k

Zin

for k=1, i+l,*++, where 1 1is that integer for which (i—l)fs- <s <1

}
Z.]H

We consider the ordinary differential equation in ZN given by
(5.2) zy (£) = Ag(e)z (0).

Since KN(t) is piecewise constant, the evolution operator corresponding to

(5.2) is of the following form:
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If (@) g<s<t<iy,
Gy(t,s) = exp{(t-s)AN(i ﬁ)]
If (1-1) § < s <1g< wer <ol < tij%,
Bg(es9) = exp (e~ (=1 PAGD Jexe [ACG-D D] -

..... .exp [—;AN((1+1)§-)] exp (1——— s)AN(l—)_}

It then follows that

w(e-(-1p) L= s) jT-Tl o (o)
= e ]

[ﬁN(t,s)(p < e e i e
and therefore for t < T
o, (t,8)] < w(T-s)
where
M o= /v,

THEOREM 5.1. Consider the FDE initial value problem (2.1), (2.2) under
the additional assumption stated in Theorem 3.1. Suppose further that

{ZN sPys AN(t)} is an approximation scheme satisfying conditions (1), (2), (3)

of Theorem 3.1. Then if {Z A (t)} 1is an approximation scheme with AN(t)

N’ N’

defined as in (5.1), we have

m | [PLU(t, s)—U (t,8)P ]z, | = o,

N> o

for each zOeZ uniformly in t for tels,T].
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Proof. As in the proof of Theorem 3.1, it can be argued that for

zOED
(5.3)
t" ~
[0 (t,8) Pz, - BLUCE,8) 2| = | J;UN(t,T)[AN(T)PN—PNA(T)]U(T,s)zOdT[

A

T ~
Mew(T—S)J' ‘ [AN(T)PN - PNA(T) lz(t,s)|dt
S

The desired result will clearly follow if we can demonstrate that for each
T€[s,T] the integrand in the last expression in (5.3) above tends to zero
as N - «, with the convergence being dominated. Fortunately,

however, this can be argued in precisely the same manner in which it was
done in the proof of Theorem 3.1 with one minor exception. We must show

that for (3-DE <t < 5, 2(1,8) = (x(0),x) and Pz(1,s) = & (D),xD),
T N
L(JN)xT > L(T)xT »

with the convergence being dominated. Using the estimates computed in
proving the analogous claim in Theorem 3.1, we have
. N .r N .r
(5.4)  [LGPx, - LOx < LGP G- x| + | LGP - Lt)x |
V 1 0 2
2.,.\3
5(ZIA.|°°+ L lac,e] de)ﬂm)
j=0 -r
. N 3 N
(% —x|w+r |D(xT—xT)|2)
o r 9 r
+ (JE% lA(jﬁ) -A(D)] + .[rlA(jﬁ,e) —A(r,e)lde)lxrl

N
< Ml(lxN-x|m + r%ID(xT— xT)|2)

v 0
+ “z( ZEJ |Gy - a0 |+ !r IA(j%,e)—A(r.G)lde)

+ 0 as N = o,
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where we have used conditions (3a) and (3b) to conclude that the first
term above tends to zero and the continuity of the right hand side of
the FDE to conclude that the second term tends to zero as well. Recalling

that by condition (3b) we have

N 2 2
ID(xT—xT)IZ < K|[D xT|2§ K|[D x|2,

it then follows that the convergence in (5.4) is dominated.
Finally, as was the case in Theorem 3.1, D dense in Z and the opera-
tors [ﬁN(t,s)PN-PNU(t,s)] uniformly bounded are sufficient to guarantee

convergence on all of Z and the theorem is proven.

We next turn our attention to the second alternative which involves the
total discretization of the time dependency in the equation. Let
{ZN,PN,AN(C)} be an approximation scheme for the initial value problem (2.1),
(2.2) satisfying the hypotheses and conditions of Theorem 3.1. Suppose
further that KN(t) and i are as they were defined in (5.1). Then for

each N = 1,2,¢++, and each t > s define the operator VN(t,s):ZN > 7

N
by:
- At

Vy(tss) = [I- (t=s)Ay(t) )
il

(i-l)§<sit§i§
and

y(68) = (1= (- G-DPA® THI-FA G- 5) ™ L
e (T RA@D D) THI- GE - oA T

if

(1-1)§<351§<---<(j-1)§<c5j§,
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In light of the arguments regarding the maximal dissipativeness of the
operators AN(t) - wI given in the proof of Theorem 3.1, we have that for
N sufficiently large, the operator inverses required in the definition of

VN(t,s) above exist. Furthermore, using (3.1) it is easily verified that

i . (t-s)X+2
]vN(t,s)lo < T Nr_ = (1-w _E)‘(J-J'Al) <(l-w ﬁ) ro ", ou(t-s)
k=1 (;‘) -Ww as N = o

and hence, for s <t <T, VN(t,s) is uniformly bounded. In fact, it can

be shown that for all N sufficiently large there exist an @ > 0 such

that
(5.5) Jg(e,)| < meP(T7S),
where

M = Vv

THEOREM 5.2. Let {ZN,PN,AN(t)} be an approximation scheme for the
initial value problem (2.1), (2.2) under the additional smoothness assumption
stated in Theorem 3.1. Suppose further that {ZN,PN.AN(C)} satisfies
conditions (1), (2), and (3) of that theorem. Then for VN(t,s) as defined
above, we have

Nljz |[PNU(t,s)—VN(t,s)PN]z0| =0

for each z) € Z uniformly in t for t &€ [s,T].

The proof of Theorem 5.2 can be argued in a manner similar to that
used by Yosida in the proof of Theorem XIV.2 in [25]. We shall outline the
essential ideas. Using the definition of VN(t,s) and the resolvent

identity (i.e. for A, B 1linear operators and A € p(A)n p(B) we have




Sl = T —
———— —
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R(A;A) - R(A3B) = R(A3A) (A-B)R(A;B) it is not difficult to show that
for N sufficiently large
(5.6) S V(69 = V(e A (o) (1- (1 E- )R (e) T
‘ 9s N N ? AN ( N AN :
This in turn implies that for zoe D i
-a_.- }
(5.7) T [VN(t,T)PNPNU(T,S)ZO] ,
= l-a—v (t,T)P_| P U(T,s)z, + V (t,T)P P ia—U('r s)z
3T N*7? N N ? 0 N ? N'N ot ’ 0
= i r " -1
- VN(t,T)IPNA(T)—AN(T) (1- G §-oho) PNIU(T,s)zO.

Integrating both sides of (5.7) from s to t we find

[PNU(t, s) - VN(t,s)PN]zo

t
= fVN(t,T) lPNA(T) - (I— ¢t %— T)KN(T))-lKN(T)PN]U(T,S)zOdT.
S

Using the bound given in (5.5) we have for z, € D and z(t,s) = U(t,s)zo

| [PyUCt,s) - VN(t,s)PN]zol

t
5f|vN(t,r)| (-« = T)RN(T))'H IIKN(T)PN-;NA(T)

S

z(1,s) |dt

t
+ f(VN(t,T)f f l(r- (- r)RNm) -1 IIPNA(r)za,s)Jdr
S

T
< MZew(T—s) 1-w %fl f | [;‘\N(T)PN— PNA(T) lz(1,s) |dT
-]
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. T
+ Me“’(T'S)f| I([_ (1%-1)KN(T))-1-I‘PNA(T)Z(T,S)IdT
S

T
< f IIRN(T)PN‘PNA(T)IZ(T,S)|dT

)

T
+ Yy fl I(I- (i%-T)KN(T))_lPN— PNI’A(T)Z(T,S) |dt
s
z T1 + T2.

We have already argued (cf. proof of Theorem 5.1) that Tl +0 as N > =, i

uniformly in t for t €[s,T]. Consider the term T2' Since ‘]

(1- ag-ok@) ™ = py (af - DA,

where P1 0(z) denotes the (1,0) entry in the Padé table of rational
’
function approximations to the exponential we can apply [20, Theroem 10.3]

and thus conclude that for each 1 €[s,T]

| [(I- ¢ %— T):\N(T))_lPN— PNI]A(T)Z(T,S)| > 0

as N + ©, Furthermore, since zq €D and z(t,s) = (X(T)’XT) we have

| ’(1- (1 E- A o) ey - PNIIA(T)Z(T,S) |2

| A

| [(1- 15 - DAD) ey - PNI] 12 |A(T)z(t,8) | 2

1

In

(M(l-w%)— +l)2|(L(T)xT,DxT)|2 < (M(l—m %)_1+1)2[|L(T)x1_|2 + IDlez]

0
\Y
3 . 2.\% 2
(j§O|Aj|m+ r |(£(A( ,0)) de) Iw)lxlm}

[

(M(1- w0y y"e1)?

e —

2

+ lelLz(s-r,'l‘)

M :

A
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for N sufficiently large. Therefore T2 +0 as N- = uniformly in ¢t

for t €[s,T] and hence
l[PNU(t,s)-VN(t,s)PN]zol >0 as N>

uniformly in t for t € [s,T] for each zOE D. Since D 1is a dense
subset of Z and the operators [PNU(t,s)-VN(t,s)PN] are uniformly bounded
we once again can extend the convergence to all of Z and the theorem is

proven.

If we define
~ t.
2, (£,830,0,8) = U (£,8)P, (N,0) + JUN(t,T)PN(fm,om,
and
t
g (£,53n,0,) = V(£,8)P (n,9) + !VN(t,T)PN(f(T),O)dT,

then all of the statements in Theorem 3.2 regarding the convergence of the
approximations to the solution of the nonhomogeneous problem remain valid

replaced by either 2z, or w_.

with =z N N

N

Remank. The operators UN(t,s) and ﬁN(t,s) defined previously
must be computed indirectly. That is, they are computed as the numerical

solution to the ordinary differential equation initial value problems in

ZN given by
UN(t,s) = AN(t)UN(t,s)
UN(s,s) =1
and
"

i
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Uy (t,8) = A (0)Ty(e,9),

ﬁN(s,s) =1,

respectively. The operator VN(t,s) on the other hand, can be computed
directly. Although in practice we never actually compute the operators

~

U. or V_, the above observation reveals that when one uses the fully

UN’ N N

discrete scheme, there is no further approximation required beyond the
approximation of A(t) by AN(t) and z by PNzO. However, the time
discretization employed in the definition of VN(t,s) is essentially a
backwards Euler scheme which is only first order convergent (cf. [20]).
It is unlikely, therefore, that the discrete scheme we have presented would
perform as well as the semi-discrete schemes used in conjunction with say
a fourth order Runge Kutta method to integrate the approximating ordinary
differential equation. The discrete scheme should not however be totally
discarded in that it does represent a starting point for the development
of a discrete approximation framework (similar to the one developed for
autonomous delay systems in [20]) encompassing time discretizations of

arbitrarily high order.

6. Numerical Results

In this section we discuss a variety of numerical examples which demon-
strate the feasibility of the approximation methods developed in sections
3 and 4. All computations were performed using a software package written
for the IBM 370 model 158 computer at Brown University. Since our primary
objective was to test our approximation methods and their convergence pro-
perties, factors such as computational efficiency and storage requirements

were given only secondary consideration in the design of our programs. We
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note that software packages developed to implement the spline approximation
schemes for linear autonomous functional differential equations discussed in
(8] can easily be modified so as to be able to generate approximate solutions
to nonautonomous equations via the schemes which we have presented above.

In all of the examples which follow, the approximation scheme employed
represents a realization of the linear spline scheme discussed in section
4. In order to analyze the convergence properties of the scheme we have
computed either exact solutions via the method of steps or highly accurate
approximate solutions using the method of steps combined with a fourth order
Runge Kutta integration scheme for ordinary differential equations. 1In the
latter case, we emphasize that although our reference solutions are approxi-
mate, they were computed using methods which are completely independent of
the approximation schemes which we are testing, and hence should not lead
to invalid conclusions. In fact, for the examples for which exact solutions
were available, we also computed approximate reference solutions and found
them to be virtually indistinguishable from numerical tabulations of the
exact solutions. The examples for which the exact solution was used as
the reference solution are those for which the appropriate formulas have
been provided.

The entries GN in the tables which follow represent the absolute
differences between the reference solution x (exact or approximate) and
our approximate solutions evaluated at sample points {t } along the interval

k
of interest. That is

6y = Ixy(e) = B @ (e, 1,

N

ey ()T

for 3 = 1 or 2, dependinr on the usage below, where wN(t)= (w?(t),"-

is the solution vector of the approximating ordinary differential equation




computed using a fourth order Runge Kutta method and BN denotes the
matrix function on (-r,0) defined in terms of the linear spline basis

given in section 4.

Example 6.1.

For our first example we consider the first order homogeneous equation
x(t) = x(t) + tx(t-1),
on the interval [0,2] with constant initial data given by
xo(e)El, -1 <6 <0.

For this example we have computed the exact solution and it is given by

2t -t -1 t € [0,1]
x(t) =

1 2

2et + (t2-8yef™ 4 2 4 2e + 2 £ €[1,2]

Upon inspection of the numer” "2l results given in Table 6.1, it is easily

seen that convergence is second order.

Table 6.1

t x(t) 5, 84 Sg 816 632

0 1.0 0 0 0 0 0

.25 1.31805 | .0310 | .0108 | .0024 | .0006 | .0002

.5 1.7974 .0655 | .0167 | .0043 | .0010 | .0002

.75 2.4840 .1079 | .0275 | .0069 | .0017 | .0004
1.0 3.43656 | .1482 | .0391 | .0097 | .0024 | .0005
1.25 4.7773 .1933 | .0519 | .0145 | .0036 | .0009
1.5 6.73324 | .2859 | .0823 | .0205 | .0051 | .0013
1.75 9.6190 .4560 | .1282 | .0325 | .0081 | .0020
2.0 13.9050 .7405 | .2007 | .0516 | .0130 | .0033
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Example 6.2.

For our next example we consider the governing equation from an optimal

control problem discussed in [18]

|
x(t) = 6tx(t-1) + u”(t) t € [0,2] i
{
i
xy(® = 1 -1<8<0 |

-3<xt2— 6at + 100 t € {0,1]

ute) =
[} t 6[1’2],
*
where o = -23.5/44.8. The nonhomogeneous term u appearing in the

equation above is the point in L2(0,2) where the functional

2

o) = 12 + 3 [ w(e)ae,
0

achieves its minimum subject to the equation above. The exact solution

is given by

—0tt3+ 3(1—a)t2+10at+l t € {0,1]
x(t) =
(-1.20)t° + 4.5t% + (260-12) >

9 t € (1,2] .
+(12-360a)t” + at + (16.2a - .5)

The numerical results for this example can be found in Table 6.2. Once again,

the convergence 1is essentially second order.
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Table 6.2

t x(t) % S S16 839

0 1.0 0 0 0 0
.25 | -.01733 .0238 | .0034 .0010 | .0002
.5 -.41378 .0002 | .0008 .0002 | .0000
75 | -.14017 .0089 |.0013 .0009 | .0002
1.0 .85267 .1353 | .0405 0122 | .0039
1.25 1.43499 1222 |.0095 0048 | .0004
1.5 .7359 .1716 |.0082 0042 | .0013
1.75 | -.2029 .3263 |.0670 .0125 | .0033
2.0 .52455 .2170 | .0657 .0186 | .0055

Example 6.3.

Here we consider the scalar second order homogeneous equation
%(t) + tx(t-1) + x(t) = 0.
On the interval [0,3] with initial conditions given by
xo(e) = cos(86+1)

-sin(6+1)

io(e)

Rewriting the initial value problem above as « first order system we have

0 1 0 0
y(t) = y(t) + y(t-1),
-1 0 0 -t
[ -
[ cos (8+1)
¥o(6) = -1 <0 <o,
~-sin(8+1)

where
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x(t)
y(e) = [,
x(t)
Our numerical results for Yy =% and ¥y = X are tabulated in Tables

6.3 and 6.4 respectively. For this two dimensional example, the convergence

is observed to be quadratic for both components of the solution.

Table 6.3
t y1(6) 8, S, Sg $16
0 .54030 .00168 | .0003 .0000 | .0000
.5 075816 | .0046 | .0009 .0002 | .0001
1.0 ~.34086 .0277 | .0076 .0019 | .0005
1.5 ~.46758 0637 | .o163 .0041 | .0009
2.0 -. 14448 .0885 | .0211 .0051 | .0012
2.5 .487092 | .0546 | .0092 .0018 | .0003
3.0 .86544 .0868 | .0291 .0079 | .0022
Table 6.4
t yo(t) S, S, h S16
0 -.84147 .0021 | .0003 .0000 | .0000
.5 -.95738 0126 | .0035 .0009 | .0002
1.0 -.62366 .0247 | .0060 .0015 | .0003
1.5 .17833 .0221 | .0050 .0011 | .0002
2.0 1.07236 .0198 | .0081 .0024 | .0008
2.5 1.2591 .1283 | .0369 .0096 | .0025
3.0 .01298 2552 | L0447 .0085 | .0218
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Example 6.4.

We again consider a damped oscillator with delayed damping. In this
example, however, we place the time varying coefficient in front of the
restoring term instead of the damping term as was the case in the previous

example. The initial value problem is given by

() + x(t-1) + tx(t) = 0 t €[0,3] ,

xo(e) cos(6+1)

-1<86<0,

io(e) —sin(N+1)

or

y(t) y(t) + y(t-1) t €[0,3] ,

cos (6+1)
Yo = -1<6<0,
-sin(6+1)

where

x(t)?

y(t)

. ’

x(t)
if written as an equivalent first order system. Examination of the numerical
results contained in Tables 6.5 and 6.6 reveals that the quadratic convergence
is unaffected by the placement of the time varying coefficient. Once again

we have second order convergence in both the x and x components.
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Table 6.5
§
t () S, 8, Sg S16 :
0 .540302 .0017 | .0002 .0000 | .0000
.5 .133213 .0121 | .0032 .0008 | .0002
1.0 -.166604 .0370 .0096 .0024 | .0006
1.5 -.230397 .0605 .0152 .0037 .0009
2.0 -.035350 .0480 | .0098 | .0023 | .0005
2.5 .262053 .0240 .0085 .0023 .0006 L
3.0 .365969 | .1226 .0307 .0076 .0019 '
Table 6.6
t Yo (t) Sy 84 Sg $16
0 -.841470 .0021 | .0003 | .0000 .0000
.5 -.752190 .0184 | .0044 | .0012 .0003
1.0 -.396825 .0213 | .0062 | .0016 .0004
1.5 .149976 .0069 .0050 | .0012 .0004
2.0 .577757 .0884 | .0225 | .0056 .0015
2.5 .504380 .1601 .0384 | .0094 | .0024
3.0 ~.163431 .0899 .0148 | .0029 .0006

Example 6.35.

In this example we consider a damped oscillator with sinusoidal
external force and delayed restoring force having a time varying coefficient.

The initial value problem is given by

x(t) + i(t) + tx(t-1) = sint,
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xo(e) = sin{(p+1)
. ~-1<6 <0,
x0(6) = cos (0+1)
or _
. 0 1 0 0 0"
y(t) = y(t) + y(t-1) + s
0 -1 -t 0 sint
sin(g+1)]
¥5(0) = -1<8<0,
cos(0+1)
where
x(t)
y(t) = |, .
x(t)

As the numerical results in Tables 6.7 and 6.8, substantiate, second order
convergence in both the x and X components of the solution is maintained
even with the inclusion of the nontrivial forcing term. However, as will
become apparent from the numerical results discussed in Example 6.9, the
rate of convergence is sensitive to the smoothness of the function appearing

as the nonhomogeneous term in the equation.

Table 6.7
t ¥y ) 8, 8g 816
0 .841470 | .0021 | .0003 | .0000 | .0000
.5 1.067646 .0006 | .0007 | .0001 | .0000
1.0 1.243813 .0125 | .0027 | .0007 | .0002
1.5 1.341552 .0152 | .0040 | .0010 | .0003
2.0 1.269265 .0057 | .0006 | .0001 | .0000
2.5 .902306 .0147 | .0049 | .0012 | .0003
3.0 .132715 .0425 | .0115 | .0029 | .0007
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Table 6.8
t ¥y () S, 5, Sg %16
0 . 540302 .0017 .0002 . 0000 . 0000
.5 .395912 .0174 .0034 . 0008 .0002
1.0 .296513 .0098 .0029 .0008 .0002
1.5 .063469 .0033 .0007 .0004 .0001
2.0 -.395815 .0115 .0047 .0009 .0002
2.5 ~1.111002 .0238 .0054 .0014 .0003
3.0 -1.97221 .0355 .0091 .0021 . 0005
Example 6.6.
For the second order equation
%(t) + e "x(t-1) + x(t) = sint t €0,3] ,
with initial data
x (1) = cos(P+1)
-1 <8 <0,
x (B) = -sin(0+1)

the numerical results given in Tables 6.9 and 6.10 exhibit second order

convergence.
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Table 6.9

t x(t) 62 64 68 616

0 .540302 .0017 .0002 .0000 .0000

5 .106974 .0093 .0026 . 0007 .0002

1.0 -.171978 L0413 .0108 .0027 .0007

1.5 -.134712 .0671 .0167 .0041 .0010

2.0 .217952 .0554 .0123 .0029 .0007

2.5 . 745662 .0035 .0033 .0010 .0003

3.0 1.227099 .0904 .0239 .0061 .0016

Table 6.10

t x(t) 62 64 68 616
0 ~.841470 .0021 .0003 .0000 .0000
.5 ~.791286 .0217 .0061 .0015 .0004
1.0 -.269420 .0232 . 0050 .0012 .0003
1.5 .416949 .0127 .0039 .0011 .0003
2.0 .944983 .0766 .0206 .0052 .0013
2.5 1.08968 .1262 .0308 .0077 .0019
3.0 .756316 .1253 .0284 . 0069 .0017

Example 6.7.

In this example we consider the same damped oscillator as the one dis-

cussed in Example 6.5.

tion and provide discontinuous initial data.

given by

() + x(t) + tx(e-1) = 0

Here, however, we exclude the external forcing func-

The initial value problem is

t €[0,3],
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(1 6 €[-1,-3]

x,. (9)
0 |1 8 €(~3,0]

X, (0) =

It
(=]

The numerical results for this example can be found in Tables 6.11 and

6.12. From the data contained in these tables, it can easily be inferred
that the rate of convergence 1s sensitive to the smoothness of the function
given as initial data. Indeed the convergence exhibited in both the x and
x components of the solution is clearly not second order. It is interesting

1
to note initial data that is continuous but not C can also lead to sub-

quadratic convergence. We shall see this in the next example.

Table 6.11
t x(t) 62 64 68 616
0 -1.000 .0430 .0070 .0003 .0000
.5 -1.018469 .0094 .0324 .0260 .0069
1.0 -.994824 .0482 .0549 .0211 .0013
1.5 -.779472 .0701 .0112 .0137 .0010
2.0 -.344241 .1063 .0615 .0164 .0004
2.5 . 304900 1421 .0257 . 0064 .0041
3.0 1.063963 .1508 .0018 .0028 .0059
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Table 6.12
t x(t) S,y S4 Sg $16
0 0.0 0 0 0 0
.5 -.106530 .0766 . 0442 .0252 .0143
1.0 .228874 .0286 .0349 0114 .0120
1.5 .641839 .0407 .0411 .0263 .0033
2.0 1.099665 .0880 .0161 .0167 .0051
2.5 1.463359 . 0484 .0838 .0074 .0034
3.0 1.494070 .0533 .0387 .0018 .0066
Example 6.8.
Here we consider the second order equation
%(t) + tx(t-1) + x(t) = 0 t € [0,3],
with continuous but not C1 initial data
1+6 6 € [-1,-3]
xo(e) =
-6 0 € ['&l 0]
. ‘1 8 € [-11"}]
xo(e) = I
-1 6 [ (-és 0]

Written as a first order system, the initial value problem becomes
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1+9 6 € [-1,-3)
1
¥,(8) = s
0 -6
_l e E('%’o]

with
x(t)
y(t) = |,
x(t)

It is evident from Tables 6.13 and 6.14 that second order convergence has not
been achieved. In fact there does not appear to be a discernible pattern

to the convergence. It can be pointed out that the initial data for this

1

example is contained in ZN'

N > 2, where Zé denotes the linear spline
approximation spaces being used (see section 4). It is evident from this
example that this feature need not have a positive effect upon the performance

of the approximation schemes. This is in contrast to the behavior observed

for the averaging schemes discussed in [8] when applied to autonomous equations.

Table 6.13

t O 8, 8, S 816

0 0.0 0.0 0.0 0.0 0.0

.5 -.5 .0937 | .0361 | .0122 .0045
1.0 -.843932 .2110 | .0138 | .0149 .0113
1.5 -.736574 .3184 | .0264 | .0263 .0202
2.0 -.123418 .2915 | .0013 | .0201 .0188
2.5 .629872 .0372 | .0027 | .0108 .0074
3.0 .756091 .3846 | .0384 | .0001 .0105




Table 6.14
t ¥, () 5 5, Sg 816
0 -1.0 .0819 .0122 . 0005 .0000
.5 -1.0 .0735 .0717 .0307 .0214
1.0 ~-.289816 .1923 .0159 .0032 .0159
1.5 .752107 L0427 .0296 .0007 . 0091
2.0 1.57099 .2871 .0718 .0383 .0180
2.5 1.172884 .6506 .0309 .0580 .040
3.0 -.920864 .6728 .0716 .0309 .0239
Example 6.9.

For our final example we again consider the damped oscillator with
delayed restoring force of Example 6.5. Here, however, we include a dis-
continuous external forcing function in the equation. The initial value

problem is given by

®(t) + x(t) + tx(t~1) = 10u_(¢) t € [0,3],
xo(e) = cos(6+1)

-1<8<0,
xo(e) = -gin(6+1)

where U denotes the unit step at t = .5 defined by

0 t <.5

1 .5 < t.

Rewritten as a first order system, the above problem becomes
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. 0 1 0 0 [o]
y(t) = y(t) + y(t-1) + u (t) ,
0 -1 -t 0 10 -3
cos(6+1)
Yo(e) = -15.6 _<_0,
-sin(6+1)
i
where
x(t)
y(t) = |,
x(t)

Not unexpectedly, we found that the observed rate of convergence for our
approximation schemes was sensitive to the discontinuity in the forcing

function. As the numerical results in Tables 6.15 and 6.16 bear out, k

convergence in the first component of the solution appears to be second

order throughout, while in the case of the x component, quadratic con-
vergence is obtained at some of the sample points but not at others. The
discontinuity in the nonhomogeneous term introduces a jump in the second
derivative of the solution. This, in turn, will degrade the performance

of the approximation schemes.

Table 6.15

t yp(t) 8, Sy Sg $16

0 .540302 | .0017 | .o002 | .0000 | .0000

.5 .191454 | .0182 | .0044 | .0010 | .0003
1.0 .982577 | .1672 | .0454 | .0108 | .0027 !
1.5 3.330325 | .2486 | .0585 | .0148 | .0037 7
2.0 6.631893 | .2137 | .0551 | .0133 | .0031
2.5 | 10.105261 | .0876 | .0077 | .0017 | .0001
3.0 | 12.380963 | .2126 | .0654 | .0177 | .o0050
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Table 6.16

t ya(t) S, 8, Sg 816
0 -.841470 .0021 |.0003 .0000 | .0000
.5 -.557825 L0214 |.0043 .0023 | .0010
1.0 3.386594 .1169 |.0115 0047 | .0012
1.5 5.823277 .0522  |.0022 .0010 | .0004
2.0 7.133736 .0543  |.0261 .0104 | .0036
2.5 6.298532 .2048 |.0628 0143 | .0041
3.0 2.180855 .4984 | .1208 .0318 | .0086

Although a complete characterization of the convergence properties of the
approximation schemes we have developed would be extremely difficult if not
impossible to obtain, based on the numerical evidence which we have presented,
the following conclusion can safely be drawn. Our schemes appear to yield
quadratic convergence for initial value problems in which the initial data,
external forcing function, ccefficients and therefore the solution are

smooth. On the other hand, it is a relatively simple matter to break

the second order convergence in some or all of the components of the

solution through the introduction of irregularity into the solution.
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